首页> 外文OA文献 >Quantum Enhanced Inference in Markov Logic Networks
【2h】

Quantum Enhanced Inference in Markov Logic Networks

机译:马尔可夫逻辑网络中的量子增强推理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Markov logic networks (MLNs) reconcile two opposing schools in machinelearning and artificial intelligence: causal networks, which account foruncertainty extremely well, and first-order logic, which allows for formaldeduction. An MLN is essentially a first-order logic template to generateMarkov networks. Inference in MLNs is probabilistic and it is often performedby approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling.An MLN has many regular, symmetric structures that can be exploited at bothfirst-order level and in the generated Markov network. We analyze the graphstructures that are produced by various lifting methods and investigate theextent to which quantum protocols can be used to speed up Gibbs sampling withstate preparation and measurement schemes. We review different such approaches,discuss their advantages, theoretical limitations, and their appeal toimplementations. We find that a straightforward application of a recent resultyields exponential speedup compared to classical heuristics in approximateprobabilistic inference, thereby demonstrating another example where advancedquantum resources can potentially prove useful in machine learning.
机译:马尔可夫逻辑网络(MLN)调和了机器学习和人工智能领域的两个对立派:因果网络和一阶逻辑,因果网络很好地说明了不确定性,一阶逻辑则允许形式演绎。 MLN本质上是生成Markov网络的一阶逻辑模板。 MLN的推论是概率性的,通常通过近似方法来执行,例如马尔可夫链蒙特卡洛(MCMC)Gibbs采样.MLN具有许多规则的对称结构,可以在一阶水平和生成的Markov网络中利用。我们分析了各种提升方法产生的图结构,并研究了可以使用量子协议在状态准备和测量方案下加速吉布斯采样的程度。我们回顾了不同的方法,讨论了它们的优点,理论局限性以及它们对实现的吸引力。我们发现,在近似概率推断中,与经典启发式方法相比,最新结果的直接应用产生了指数加速,从而证明了另一个示例,其中高级量子资源可能在机器学习中可能有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号